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A refined polar decomposition for J-unitary
operators.

S.M. Zagorodnyuk

1 Introduction.

Last years J-symmetric, J-skew-symmetric and J-unitary operators attracted
still more and more attention of researches, see, e.g. [1], [2], [3], [4] and
references therein. Recall that a conjugation J in a Hilbert space H is an
antilinear operator on H such that J2x = x, x ∈ H, and

(Jx, Jy)H = (y, x)H , x, y ∈ H.

The conjugation J generates the following bilinear form:

[x, y]J := (x, Jy)H , x, y ∈ H. (1)

A linear operator A in H is said to be J-symmetric (J-skew-symmetric) if

[Ax, y]J = [x,Ay]J , x, y ∈ D(A), (2)

or, respectively,

[Ax, y]J = −[x,Ay]J , x, y ∈ D(A). (3)

A linear operator A in H is said to be J-isometric if

[Ax,Ay]J = [x, y]J , x, y ∈ D(A). (4)

A linear operator A in H is called J-self-adjoint (J-skew-self-adjoint, or
J-unitary) if

A = JA∗J, (5)

or
A = −JA∗J, (6)

or
A−1 = JA∗J, (7)

respectively.
A refined polar decomposition for complex symmetric operators was ob-

tained by Garcia and Putinar in [2]. Using the technique of Garcia and
Putinar, an analog for complex skew-symmetric operators was obtained by
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Li and Zhou in [4, Lemma 2.3]. In this paper, we shall characterize the
components of the polar decomposition for an arbitrary J-unitary operator.
This characterization has a quite different structure as that of the above-
mentioned decompositions. For the case of a bounded J-unitary operator,
a similar decomposition was obtained in [3, Theorem 3.2]. However, in the
unbounded case we can not use arguments from [3].
A linear operator A in a Hilbert space H is said to be J-imaginary (J-real) if
f ∈ D(A) implies Jf ∈ D(A) and AJf = −JAf (respectively AJf = JAf),
where J is a conjugation on H. We shall answer a question of the existence
of J-imaginary self-adjoint extensions of J-imaginary symmetric operators.
This subject is similar to the study of J-real self-adjoint extensions of J-real
symmetric operators, see [5]. However, we can not state that a J-imaginary
symmetric operator has equal defect numbers. Nevertheless, it is shown that
a J-imaginary self-adjoint extension of a J-imaginary symmetric operator
exists in a possibly larger Hilbert space.

Notations. As usual, we denote by R,C,N,Z,Z+, the sets of real num-
bers, complex numbers, positive integers, integers and non-negative integers,
respectively; Re = C\R. By Id we denote the unit matrix of order d; d ∈ N.
By B(S) we mean a set of all Borel subsets of S ⊆ C. If H is a Hilbert
space then (·, ·)H and ‖ · ‖H mean the scalar product and the norm in H,
respectively. Indices may be omitted in obvious cases. For a linear operator
A in H, we denote by D(A) its domain, by R(A) its range, and A∗ means
the adjoint operator if it exists. If A is invertible then A−1 means its inverse.
A means the closure of the operator, if the operator is closable. If A = A∗,
then Rz(A) := (A − zEH)−1, z ∈ Re. For a set M ⊆ H we denote by M

the closure of M in the norm of H. By EH we denote the identity operator
in H, i.e. EHx = x, x ∈ H. In obvious cases we may omit the index H.

2 Properties of J-unitary operators.

The following proposition accumulates some basic properties of J-unitary
operators.

Proposition 1. Let J be a conjugation on a Hilbert space H, and A be a
J-unitary operator in H. Then the following statements are true:

(i) A is closed;

(ii) A−1 is J-unitary;

(iii) A∗ is J-unitary;
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(iv) A∗A is J-unitary;

(v) If A is bounded, then D(A) = R(A) = H.

Proof. Let A be a J-unitary operator in a Hilbert space H. By [3, Propo-
sition 2.8] we may write: A−1 = JA∗J = (JAJ)∗, and therefore A−1 and A

are closed. Moreover, by [3, Proposition 2.10] we get

(A−1)−1 = (JA∗J)−1 = J(A∗)−1J = J(A−1)∗J,

and therefore A−1 is J-unitary. Since

(A∗)−1 = (A−1)∗ = JAJ,

then A∗ is J-unitary. Set G = A∗A. The operator G is non-negative and
we may write:

JG∗J = JA∗AJ = JA∗JJAJ = A−1(A∗)−1 = (A∗A)−1.

Thus, G is J-unitary.
If A is bounded, then A−1 = JA∗J is bounded, and the closeness of A

and A−1 implies (v).

Now we can obtain a refined polar decomposition for a J-unitary oper-
ator.

Theorem 1. Let J be a conjugation on a Hilbert space H. Then the fol-
lowing assertions hold:

1) If A is a J-unitary operator in H then

A = UB, (8)

where U is a unitary J-real operator, and B is a non-negative self-
adjoint J-unitary operator;

2) If an operator A in H admits a representation (8) with a unitary J-
real operator U , and a non-negative self-adjoint J-unitary operator B,
then A is J-unitary.

3



Proof. Let A be a J-unitary operator in a Hilbert space H. Set G = A∗A,
and let EG(δ), δ ∈ B(R) be the spectral measure of G. By Proposition 1 we
conclude that G is J-unitary. Let us check that E(δ) := JEG(δ)J , δ ∈ B(R)
is the spectral measure of G−1. In fact, E(δ) satisfies conditions E2 = E,
E∗ = E, therefore E(δ) is a projection operator. The strong σ-additivity
of E follows from the strong σ-additivity of EG and the continuity of J .
Moreover, E(R) = JEG(R)J = EH . Thus, E is a spectral measure. Denote
by T the corresponding to E self-adjoint operator in H. Observe that

Rz(G
−1) = (G−1 − zEH)−1 = (JG∗J − JzJ)−1

= J(G∗ − zEH)−1J = JR∗
z(G)J, z ∈ Re.

For arbitrary f, g ∈ H, z ∈ Re, we may write:

(Rz(G
−1)f, g) = (JR∗

z(G)Jf, g) = (Rz(G)Jg, Jf)

=

∫
1

s− z
d(EG(s)Jg, Jf) =

∫
1

s− z
d(E(s)f, g) = (Rz(T )f, g).

Therefore T = G−1. Notice that

Rz(J |A|J) = (J |A|J−zEH )−1 = (J(|A|−zEH)J)−1 = JR∗
z(|A|)J, z ∈ Re.

For arbitrary f, g ∈ H, z ∈ Re, we may write:

(Rz(J |A|J)f, g) = (JR∗
z(|A|)Jf, g) = (Rz(|A|)Jg, Jf)

=

∫
1√
s− z

d(EGJg, Jf) =

∫
1√
s− z

d(Ef, g) =

(∫
1√
s− z

dEf, g

)

= (Rz(
√
G−1)f, g).

Therefore
J |A|J =

√
G−1. (9)

Let us check that √
G−1 =

(√
G
)−1

. (10)

In fact, using the change of a variable:

λ = π(u) =

{ √
u, u ≥ 0
u, u < 0

,
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for the spectral measure EG (see, e.g., [6]) we obtain the spectral measure
E√

G
of

√
G, and we may write:

(√
G
)−1

=

(∫ √
udEG

)−1

=

(∫
λdE√

G

)−1

=

∫
1

λ
dE√

G
=

∫
1√
u
dEG(u). (11)

On the other hand, using the change of a variable:

λ = π̂(s) =

{
1

s
, s > 0

s, s ≤ 0
,

for the spectral measure E of G−1, we obtain the spectral measure EG, and
we may write √

G−1 =

∫ √
sdE(s) =

∫
1√
λ
dEG(λ). (12)

By (11),(12) we conclude that relation (10) holds.
By (9),(10) we obtain that J |A|J = |A|−1. Thus, B := |A| is J-unitary.

Consider the polar decomposition for A: A = UB, where U is a unitary
operator in H (since R(A) = R(B) = H). Then A∗ = B∗U∗ (since U is
bounded on H) and

UB−1 = (BU−1)−1 = (A∗)−1 = JAJ = JUJJBJ

= JUJB−1.

Therefore
Uh = JUJh, h ∈ D(B).

By the continuity we conclude that U is J-real.
Let us check assertion 2) of the theorem. For the operator A in this case

we may write:
JAJ = JUJJBJ = UB−1, (13)

A−1 = B−1U−1. (14)

Since U is bounded on H, we may write:

JA∗J = (JAJ)∗ = (UB−1)∗ = (B−1)∗U∗ = B−1U−1 = A−1.

Therefore A is J-unitary.
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Corollary 1. Let J be a conjugation on a Hilbert space H, and A be a
J-unitary operator in H. Then operators A∗A and AA∗ are unitarily equiv-
alent.

Proof. In the notations of Theorem 1 we may write: A∗A = B2, and, since
U is bounded, AA∗ = UB(UB)∗ = UBB∗U∗ = UBBU−1 = UA∗AU−1.
Observe that we only used that U is unitary in the polar decomposition of
A.

As it was noticed in [2], for the unilateral shift A the operators A∗A and
AA∗ are not unitarily equivalent. Thus, the unilateral shift is not J-unitary.

Example 1. (An unbounded J-unitary operator) Let

A0 := A0(β) :=

(
0 βi

−βi 0

)
, β ∈ (−1, 1).

Observe that

(A0(β)± I2)
−1 =

1

1− β2

(
±1 −βi

βi ±1

)
.

Let H =
∞⊕
k=1

Hk, where Hk = C
2 is the space of 2-dimensional complex vec-

tors, and A =
∞⊕
k=1

A0

(
1− 1

k

)
. For an element of H of the form h = (hj)

∞
j=1,

hj =

(
hj,1
hj,2

)
∈ Hj, we set Jh = (J hj)

∞
j=1

, where J hj =

(
hj,1
hj,2

)
. Ob-

serve that J is a conjugation on H. It is straightforward to check that A

is a bounded self-adjoint, J-skew-self-adjoint operator on H, and there exist
(EH ± A)−1. Let ek,1 be an element of H of the form (hj)

∞
j=1, hj ∈ Hj,

where hj = δj,k

(
1
0

)
; k ∈ N. Observe that

(EH +A)−1ek,1 =

(
δj,k

1

1− (1− 1

k
)2

(
1(

1− 1

k

)
i

))∞

j=1

.

Since (
(EH +A)−1ek,1, ek,1

)
H

=
1

1−
(
1− 1

k

)2 → ∞,

as k → ∞, then (EH +A)−1 is unbounded. Consider the following operator:

V = (A+ EH)(A− EH)−1 = EH + 2(A− EH)−1. (15)
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Transformation (15), which connects some J-skew-symmetric and J-isometric
operators, was studied by Kamerina in [7]. Observe that

V =

∫
λ+ 1

λ− 1
dEA(λ),

where EA(λ) is the spectral measure of A. Thus, V is self-adjoint, and we
may write:

JV ∗J = JV J = EH + 2J(A − EH)−1J = EH − 2(A + EH)−1

= (A− EH)(A+ EH)−1 = V −1.

Thus, V is a J-unitary operator. Therefore V −1 is an unbounded J-unitary
operator.

Unitary J-real operators, which appear in the refined polar decompo-
sition (8), also play an important role in the question of an extension of
J-imaginary symmetric operators to J-imaginary self-adjoint operators.

Theorem 2. Let J be a conjugation on a Hilbert space H. Let A be a
closed J-imaginary symmetric operator in H, D(A) = H. Then there exists
a J-imaginary self-adjoint operator Ã ⊇ A in a Hilbert space H̃ ⊇ H (with
an extension of J). If the defect numbers of A are equal, then there exists a
J-imaginary self-adjoint operator Â ⊇ A in H.

Proof. At first, suppose that the defect numbers of A are equal. Consider
Cayley’s transformation of A:

Uz = Uz(A) = (A−zEH)(A−zEH )−1 = EH +(z−z)(A−zEH )−1, z ∈ C.

Observe that
JMz(A) = M−z(A), z ∈ C,

where Mλ(A) := (A− λEH)D(A), λ ∈ C. In particular, we see that

JM±i(A) = M±i(A). (16)

Then
JN±i(A) = N±i(A), (17)

where Nλ(A) := H ⊖Mλ(A), λ ∈ C.
Let W be an arbitrary linear J-real isometric operator, which maps

Ni(A) onto N−i(A). In particular, if A± = {f±
k }τk=0

, 0 ≤ τ ≤ +∞, is an
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orthonormal basis in N±i(A), corresponding to J (i.e. Jf±
k = f±

k ), then we
may set

W

τ∑

k=0

αkf
+

k =

τ∑

k=0

αkf
−
k , αk ∈ C.

Then V := Ui ⊕ W is a J-real unitary operator in H. Observe that Ã :=
iEH + 2i(V − EH)−1 ⊇ A, is self-adjoint and J-imaginary.

In the case of unequal defect numbers, we may consider an operator
A := A⊕(−A) in a Hilbert space H := H⊕H with a conjugation J = J⊕J .
The operator A is closed symmetric, J -imaginary, D(A) = H, and it has
equal defect numbers. Thus, we may apply to A the already proved part.

Example 2. (A J-imaginary symmetric operator) Consider the usual space

H = l2 of square summable sequences of complex numbers h =




h0
h1
h2
...


. A

conjugation J will be the following one: Jh =




h0
h1
h2
...


. An operator A we

shall define on a set of all finite vectors F (i.e. vectors which components
are zeros except for a finite number) by the following matrix multiplication:

Ah = i




0 α0 0 0 . . .

−α0 0 α1 0 . . .

0 −α1 0 α2 . . .
...

...
...

...
. . .


h.

It is straightforward to check that A is symmetric and J-imaginary. Observe
that A is J-imaginary, as well. Applying Theorem 2 to the operator A we
conclude that the operator A has a self-adjoint J-imaginary extension in a
Hilbert space H̃ ⊇ H.
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A refined polar decomposition for J-unitary operators

S.M. Zagorodnyuk

In this paper, we shall characterize the components of the polar decom-
position for an arbitrary J-unitary operator in a Hilbert space. This charac-
terization has a quite different structure as that for complex symmetric and
complex skew-symmetric operators. It is also shown that for a J-imaginary
closed symmetric operator in a Hilbert space there exists a J-imaginary self-
adjoint extension in a possibly larger Hilbert space (a linear operator A in
a Hilbert space H is said to be J-imaginary if f ∈ D(A) implies Jf ∈ D(A)
and AJf = −JAf , where J is a conjugation on H).
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